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Toroidal Resonators for Electromagnetic Waves

FERDINAND CAP M RUDOLF DEUTSCH

i4fmtruet-Tbe solution of Maxwell’s equations for toroidzl systems has

been reduced to the solution of the scafar Hefmholtz equation. The

eigenfunctions and the corresponding electromagnetic fields have been

eatculated anatythtfy. The dispersion relation was formulated. Three

different types of eigenmodes were obtained for eaeh frequency. The

structure of the eketromagnetic field of the m= 0,1,2, and 3 modes is

anatyzed.

I. INTRODUCTION

T O OUR KNOWLEDGE no exact solution of the

Hehnholtz equation is known for toroidal coordinates

[1]. On the other hand, such a solution is of interest not

only for microwave engineering, but also for the heating

of toroidal plasmas by electromagnetic waves. Using a

special trick, we have been able to find a solution of the

system of Maxwell equations not only for empty wave

guides but also for resonators filled with an isotropic

homogeneous plasma [2]. In the present paper we report

on the vacuum solution, which resembles a little the

solution by Brambilla and Finzi [3] but our solution is

based on a different method and yields more eigenfunc-

tions. Our solution admits an easy construction of the

field for different modes and gives an interpretation of the

dispersion relation.

During the elaboration of this paper, it was found that

an exact unseparated solution of the same problem [4].

The solution presented here is of the separated form

j(p) ”g(d), whereas the exact solution is of the form h(p,tl).
Using series expansions a comparison of the two solutions

seems to be possible.

II. THE REDUCTION OF THE VECTOR HELMHOLTZ

EQUATION TO THE SCALAR HELMHOLTZ E@.JATION IN

TOROIDAL COORDINATES

The coordinate system which we use is the usual p, 0,+

system [5] (see Fig. 1). We study the propagation of the

electromagnetic waves on the basis of the vector Helm-
holtz equation

curl curll? – 60pOti2E = O.

In order to find solutions of (1) which

Maxwell’s set of equations we introduce the

~ in the usual form

E=eOpau2@+graddiv$

(1)

satisfy also
Hertz vector

(2)
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Fig. 1. The system of toroidal coordinates.

and

Exchanging ~ and@ in (2) a~d (3),~he Fitzgerald ~vector

could be used too. When P and F are known a general

solution of Maxwell’s equations can be written down. It is

easy to show th~t (2) and (3) satisfy Maxwell’s equations

and also (1) if P satisfies

curl curl~– grad div~= CO~Oa2~. (4)

If we write (4) in toroidal coordinates a coupled system of

three equations for the three components Pp, Pe, and P+

will be obtained, There is no possibility to obtain indepen-

dent equations for each of these components as may be

done in the case of Cartesian coordinates. But there is a

way to construct the solution of equation (4) for the

components Pp, PO, and P4 using an idea, which some-

what resembles that used in [6] and [7]. In Cartesian

coordinates (4) splits into the system of three equations:

forj=x, y, and z.

Equation (5) can be transformed to toroidal coordinates

and the components Pj can be regarded as functions of p,

0, and +. We then have to solve the scalar Hehnholtz

equation

apj a (1–PcosO) dPj
lp(l–pcose)—+m
ap ap P ae

P a 2<.
—+&p(l–pcos8)pj=o (6)

+ 1–PCOSO a+z
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where ~2=p.#+ 1
4

(13)

()

2
k2=cOpOu2R2= $ . (7) and

Here R is the major torus radius (Fig. 1). ~2=&–L (14)

Now using the coordinate transformation for the co-
4“

variant components of a vector we can express Pp, PO, and If we limit our calculations to the waves, whose longitudi-

P+ through Px, Py, and P, in the following form: nal wavelength (2TR/ m) in the torus exceeds the dimen-

sion of the transversal circular sections of one branch of

Pp(p, o, +) = –Px(p, /3,+)COSe Cos+ the torus (2RpO), or if condition

–Py(p, O,@)cosf) sin+ +Pz(p, 0, @)sinO mpO < T (15)

PO(p, 0, +) = PX(p, 0, @)sintJ cos @ (PO is the inverse aspect ratio of the torus) is satisfied, the
solution of (12) can be written in the form

+ Py(p, 0, @)sin@sin+ + P,(p, e, +)COSO
i%I=h I,0+kn,l+&2+tm,3+ “ “ “ +tm,n+ (16)

P+ (p, 0, +) = –PX(p, t?,@)sin@+PY(p, 0, @)cos@. (8) where the functions ~~,~ are solutions of the equations

So we were able to “scalarize” the vector (l), i.e., to

reduce it to a single scalar (6). ()Wtno + ~ ~2Lt,o;$ P* ~2
+K~m,o=o

a82
(17)

III. THE SOLUTION OF THE SCALAR HELWOLTZ

EQUATION IN TOROIDAL COORDINATES Wnl +p2+m,l

()

up= ~2
+ K~m, 1

The scalar Hehnholtz (6) is however also not separable
~ ap ae2

in toroidal coordinates [8]; but it can be solved. In order

to do this we make the substitution =2p2pcoswn.o (18)

*m(p, f) )eim+
Pj(p, 0, +) =

~“ ()wm,2 + ~ a 4L,2
(9) ;$ Py P*

— + K%n.2
ae 2

Inserting into (6) we obtain

= 2p*pcose*m, ~+ 3p’p’cos’q&o (19)
a ~m Jwm+Ja2L

—+k~~=
m2– 1/4—_

ap2 p ap PZ ao2 (l-pcoso)z+m”

()

Ml 3 + -1_ a24’m,3
(lo)

1A pa P*
+ f4’m,3

p ap ao2

The expression from the right-hand side vanishes if

m = 1/2. We gave this exact solution in [5] and [11]. It has, = 2p2pc0seqm,2 + 3p2p2cOS2tI+m,,

however, a period of 47 and therefore it does not corre-

spond to an empty torus. We will analyze the physical
+ 4p*p3 COS3L9*m,2.

consequences of this solution in another paper [ 11].
(20)

If m# 1/2 the-right-hand side of (10) does not vanish. The solution of (17) which is everywhere finite is given by
Since separation between p and 8 is impossible we expand the Bessel functions

the right-hand side term

~m,o ‘AJ, (KP)~os vg. (21)

(1–pcoso)2= ~ (n+ l)p”cos”e. (11)
~=() If we insert this expression in the right-hand side of (18)

This series converges for p <1. For experimental toroidal
and solve the equation we get for the first correction to

systems the maximal value of the inverse aspect ratio p is
(21):

about 0.3. In this case the error is about 10’4 if we take Ap2

into account all terms including the term -p – 4. Inserting t~,] = ~ [J,+ I(KP)UN(V- 1)8

(11) into (10) we obtain

()w. +J_ ~2+. –~p_l(K~)COS(V+ 1)0]02. (22)
il p= — + K*I)m
p ap P* aoz Inserting (21) and (22) in (19) and solving the equation we

m get the second approximation. Continuing this method we
= P2Y~ ~ (n+ l)P” Cosne (12) can calculate the corrections to an arbitrary order of

where

~=1
accuracy. Our calculations will be restricted to the lowest

v modes. In this case we get for the sum (16), for various
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values of v in the approximation up to the terms with

cos 40, the following functions (KP = z). For v = O, 1, 2, 3,

and 4 we get

[
+m,,=o=~ Jo(z)+ gJ2(z)z’– :J3(Z)Z’

4

+ ; [Jl (Z)z – Y2(Z) ]Z* + ~22:3w J*(Z)Z*

4 4

– &J6(z)z8 + &A(z)z*

(

Y;
2

)

__u?- J7(Z)Z7

+ 387072 + 115200

(

5 y: 7YfY2

)

21Y;Y2—
J5(Z)Z7 + MJ3(Z)Z755296 + 23040

(

Y?Y2 3YIY3 Y;

+ 11520+25600+ 19200” )
Jb(z)zG

(

Y:Y*+ 9Y1Y3 Y;— —— _
480

)3200’800 ‘4(Z)Z6

‘(*’~P@z6

(

Y1Y3 Y;
——

)
3 J5(z)z5

+ 2560+3840+960

-(

3Y1Y3 Y:

512
)

—+~ J3(Z)Z5+:J1(Z)Z5
’256 64

[
+ ~J1(z)– ~(4J4(z) –3zJ3(z))z3

Y1Y2
– ~(4Js(z) – 3zJ2(x))z2

1-~(4J2(z) -3zJ,(z))z Z2COS0

[

4

+ 4zJ2(z)+~J1(z)– &&5J@

4

(

Y:
2

+&z5J4(z)– ~075z+s07z
)

~ Z4J5(Z)

7Y?Y2 4

(

5Y?Y2 Y1Y3 Y;
+mz J3(z)– ~+ 320 ‘7z0

-1
Z3J4(Z)

‘(~+az3J*(z)

(

YIY3 Y; 3Y4 *—_ _

)
— ZJ3(Z)

160 ‘240+ 160

1+;z2J1(z) Z3cos20

[ 1+*Z2J3(Z) +* ZJ2(Z)+~J1(Z) Z4COS30

I

Y:Y2 *
+ &z3J4(z)+~z J3(z)

‘(~+% 1}ZJ2(Z)+;J1(Z) Z5COS48

and omitting the argument z of the Bessel functions

{

3
Y; 6

4m,v=l=B ;z2J2-s:;#J6+~zJ4

Y; ‘ Y1Y2 ~ 5Y1Y2 s
–~z J2– ~zJ5+ —zJ3

384

YIY2 .j Y34+Y34J
–—z J1–

576
—zJ4
192

~z *

[

Y? 4 Y* 3
+ Jl+m 1Z(7J3–2J1)+TZJ2 COS6

[

Y1 2
+ –Tz JO+

Y? .5 ~ Y; c
—zJ4
1152 2304 z ‘2

+ Y1Y2 ~ Y1Y2 ~ 23Y1Y2 ~
~zJ7+ ~zJ5+ —zJ3

1280

YIY2 ~ Y3 4 1–—--z J1+Gz J2 cos2Q
256

(23)

[
3Z4J, +~Z ( (j

1
‘2 3 J +6J4+ 15J2) COS313

+ – 128

[–

Y? 6 Y1Y2 ~ Y1Y2 ~

+ – 3072 ZJ2+ 17920 ZJ9+ 1536ZJ7

1SY1Y2 s _Y1Y2 5

+ 5376 z ‘5 + 256 z ‘3

+ YIY2 5 Y3 4 1)—zJ1–=z JO COS44 .
320

{

$m,v=2= C ~Z4J4+ $Z3J3+ ;Z2J3COS6

[

Y?
—Z4(J6+ 16J4– 15J2)

+ ‘2+ 1920

1+;Z3(J5+9J3) cos20

(24)
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Fig. 2. The maximum error in determining A for different Kand m.

[

Y: ‘r

– $Z2J1COS30+
Y2 ~ 1)~8-z JO– ZzJ1 COS40 (25)

(IL,V.B=D ~ZzJbCOS2$+J3COS36

. ; Z2J2COS4$
)

(26)

+m,v=, = EJ4COS4$. (27)

Here we used the notations z= Kp and yj= (j+ 1) p2/#+2.

All Bessel functions Ji are functions of Kp. The solution

~~ of (10) is a superposition of the functions (23)-(27).

The constants B, C, D, and E are determined by the

boundary conditions. For conducting torus walls BP= O

must be satisfied at the boundary p = Pv This can be

realized in agreement with (3), (8), and (9) if $~ itself

vanishes at the boundary. Condition

i’m=+m,v=o+L,v= l++m,v=2

‘$m, v=3+tm,. =4 =0 (28)

leads to five conditions which determine B, C, D, E, and

the product Kpo A very good convergence of the series

+m=+m,v=o+ +m,”=l+4m,v=2

‘i’m, v=3+i’m, v=4 +.. . (29)

was found. In Fig. 2 we have plotted the deviation of the

product Icpo from the value 2.4048255577 (corresponding

to the first root of the Bessel function Jo) for different m if

we use the method described above. The relative deviation

Kpo – 2.4048255577
A=—

Kpo

is expressed as a function of K in the interval of practical

interest. It can be seen that it is generally less than 10– 3.

This means that the approximation

+m=~JO(KP) (30)

leads to a good description of the structure of the electro-

magnetic field and that

KPO= 2.4048 (31)

can be used to determine the dependence of the parameter
K from the inverse aSpeCt ratiO P@

*--z-

K

:k
/

6 $/;‘.$-

------ ----- ------ --

i
s %4 I

----- ----- --- ---------

*=3 :
k %----- ---- ----- -

+2%.: ---- :

3
.---- —- -— __ ------ -----

“N--------—-----—_______--
,____ –.– _._-_ -r.–~

2

4
I

Fig. 3. The dependence of the eigenfrequency on the inverse aspect
ratio of the torus.

IV. THE DISPERSION RELATION

Now using (7), (13), and (31) the dispersion relation

results

(32)

If we now take into account that

po<l (33)

then the eigenfrequencies are always greater than

(34)

The dependence of the eigenfrequencies on the inverse

aspect ratio p. for different mode numbers m is given in

Fig. 3. The distance between two different eigenfrequen-

cies is of the same order as the minimum frequency.

In the whole domain of applicability of our method the

dispersion relation (32) can be approximated by the series

OR 2.4048 + po

()

1. . — —
4.8096

~2— —
c Po 4

–#&n+)2+.”” . (35)

V. THE STRUC~RE OF THE IELECTROMAGNETIC
FIELD IN THE TORUS

Now we shall use the approximation (30) to construct

the field components of the stationary electromagnetic

wave in the torus. These fields all correspond to the lowest

8 mode.
Inserting (30) into (9) we get two possibilities to choose



482 I1311ETRANSACTIONSONMICROWAVETHEORYANDTECHNIQUSS,VOL.MTT-26,NO.7, JULY1978

the Cartesian components of the Hertz vector

~o(Kp)Sk@I .
F“(p, o, +) = ~lt.x

~“

(36)

(37)

We shall use these functions to construct the toroidal

components of the Hertz vector using formulas (8).

It is possible to define some normal modes and to get

all stationary waves with the same value of m as a

superposition of these modes.

A. Toroidal Modes of the First Type

If

~O(Kf3)COS@J iaf
PX=PY=O and PZ=

VGZZe
(38)

the toroidal components of the Hertz vector

JO(Kp)Sh’l# COS~#I tit
P,=

~e

Jocose Cosln+ i@t
P*=

v- e

P+= o.

Using (2) we obtain for the components

field

are

(39)

of the electric

[( )
JO(Kp) 2–3pcos8

E,= @–A

4=
‘; ~m,J,(Kp) 1

.sinf3cosrn@eti’ (40)

[

1#+m2_—

E@=
til (Kp)

4 JO(Kp) –
~ p VW 1

KJl (Kp)sin2 f3cosrmj
“ cos 8 cosm~etiz+ .&t (41)

24-3

mdl (Kp)sin4 sinm~
E+= eimt

d-’ “

(42)

For the components of the magnetic field results from (3)

and (39)

nzJO( Kp)cos 8 Sin m@ tit
BP= iaep

~_3 e

(43)

mJO(Kp)sinO sinm+ i@,
B@= – iucp

{-3 e

(44)

Fig. 4. Toroidal modes of first type. Electric field and surface charge

distribution.

JO(Kp)–2K(l –pCOSO)J1(Kp)COS0
B+= iacp cos m$eiut.

24-3

(45)

For the charge surface density the following relation re-

sults :

2–3POCOS13 .
u- {~,sln~cosm+eiat (46)

The distribution of the surface charge and the electric

field lines in the interior of the torus are represented for

m = O, m = 1, and m= 2 in Fig, 4, As can be seen there

appear dipolar, quadrupolar, octupolar, etc. oscillations of

the electric charges in the inner side of the toroidal

surface, The changes of the electric field and the surface

currents create a magnetic field with oscillations shifted

by 90° in phase and described by (43)–(45). The equa-

tions of the magnetic field lines can be integrated analyti-

cally. We obtain

z=psinO=kl (47)

and

JO(Kp)

Viqa
cosm+ = k2. (48)

They are represented in Fig. 5 form= O, m = 1, and m = 2.
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m=o m, m.2 3mYO(fcp)sin O
+ . [Cos(m+ 1)+- cos(nz- I)+]e’@’ (54)

44-5

Fig. 5. Toroidal modes of first type. Magnetic field lines.

Remark: If we use for P, in (38) the component (37)

instead of (36) we get similar fields, which are, however,

rotated by v/2m around the z axis.

B. Toroidal Modes of the second Type

For

.lo(Kp)cosm@ jot

Px =

we’
PY=PZ=O (49)

another type of toroidal modes results. These modes are

described by

Pp=– ‘O(Kp)cOsO [cos(m+ l)@+cos(m-l)@]ei”t
2VW

(50)

P@= ‘O(Kp)s’nO [cOs(m+l)@+cos(m- l)@]ei@’ (51)
2~

Jo(Kp)
P+=–

2~
[sin(m+ 1)+-sin(m- I)@]ei@’.

(52)

The components of theelectric andmagnetic fields are

{

JO(Kp) COSO
EP= –

[

3
+m2– ~

2V= 4(: –pcose)2 1
J1(Kp)COSO

‘;
d-”

(l+3cos20)p-2cos6]

!

. [cos(m+ I)@+ cos(m- l)q]eia’

[

J1(Kp) 3JO(KP)COS0
+m ; —

j13 4{-5

+ [Cos(nz+ l)r$-cos(ln- l)+]e’”’

EO=

—

4p~(l–pcose)3 ‘J

~[cos(m+ l)++cos(m- l)+]ei”’

1
(53)

—
.lo(Kp)sin /3

[

21 3
K2+m ‘~+ 4(1–pCo@)2

2~

KJI(fcp)sin4
o (2–pcoso) 1

{

Jo(Kp)
E+=

[
l+2m’–2(l–pcose)2

4Jll 5

‘( )]

fdl(Kp)COSO
K*+?#-: –

24-3 1

. [sin(m+ 1)~-sin(nz- l)+]eia’

[

3Jo(Kp) ldl (Kp)COS6
+m —

44-”5 2q_ 3 /

. [sin(m+ l)~+sin(nz- l)~]eio’

BP=i
uq.dO(fcp)sin 0

[
zn(sin(m+ 1)++ sin(m – 1)$)

2{- 3

(55)

1
+ ~ (sin(m + l)+ – sin(rn – 1)+) eiu’ (56)

. [sin(m+ 1)+- sin(m- I)@]ei@’

ti~pmJo (Kp)cos 6
+i [sin(m+ l)~+sin(m- l)+]ei’”

2~m 3

(57)

B+= –i
Uq.ucll (Kp)sin @

[cos(m+ l)f$+cos(m - l)+]e’”’.
2-

(58)

The charge density on the surface of the torus is propor-

tional to

(l+3cos20)po–2cos/3
a- [cos(m+ l)~-cos(m - l)~]eia’

2pojm 3

‘e [cos(nz+l)+-cos(m- l)~]eiot. (59)

The electric field and the surface charge distribution are

represented in Figs. 6–9. The magnetic field lines are

given by

X=(l–pcoso )cosq$=kl (60)

and

Jo(Kp)cosJ@- = k2. (61)

They form vortices in parallel planes which are situated

perpendicular to the plane of the torus. The electric field

has a three-dimensional structure. We tried to show this

representing the field lines for different sections of the

torus. For m= O a simple dipolar polarization appears. For

high m values the field structure will be more complicated.
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Fig. 6. Toroidal mode of second type. Electric field and surface charge
distribution.

Fig. 7. Toroidal mode ofsecond type. Electtic field and surface charge
distribution.

There appear some regions with greater charge concentra-

tions which are shown in the figures.

C. Toroidal Modes of the Third Type

If

JO(Kp)sinm+ ;.,
Px =

YfGzae’

PY=PZ=O (62)

the toroidal components of the Hertz vector will be

Pp=– ‘O(Kp)cOsO [sin(m+ l)++ sin(m- l)+]e’ti’
2 v-

(63)

Pg = ‘O(KP)s’nO [sin(m+ I)++ sin(m - l)@]eiU’ (64)
2~

P+= ‘O(Kp) [cos(rn+ 1)~-cos(nz- I)r$]eiur. (65)
2~

The components of the electric and magnetic fields are

E.=

[

“(KP) [(l+3cos20)p-2cos6]

4p{W 3

Fig. 8. Toroidal mode of second type. Electric field and surface charge
distribution.

*

..3 _/ .:::.-

Gi,!iji...’
-f=- ●- +f-.;,,

- --
.T .-. .-.

i&‘> .+
.- z+..:3’...

--: :----- -
---

---

B

0

Fig, 9, Toroidal mode of second type. Electric field and surface charge

distribution.

~o(Kp)COS 6
—

2{- 5
[:+(~2-+)(1-f’co’~)2 1]

. [sin(m+ l)++ sin(m - l)+]eia’

[

fdl(Kp) 3Yo(lfp)coso
+m —

2~m 3 4q_ 5

. [sin(nz+ l)f$-sin(m- I)@]ei@’

{

.lo(Kp)sinll
E@=

2~m 5

1
(66)

[( )o K2+I+ (@COS6)2+;
I

til(Kp)sinO
(2-pcost?)

4p{_ 3 1

~[sin(m+ l)~+sin(m- l)+]eiu’

+ 3mJ0(Kp)s’no [sin(m+ 1)+-sin(m- l)+]ei””.

4{- 5

(67)
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Fig. 10. Toroidal mode of third type. Electric field and surface charge
distribution.

B
m=2 ----- -.

*-:&: ,

!*

‘?

+ .- ----

-%s-
“. .;—==”

“,_+:<

,.. -

Fig. 11. Toroidal mode of third type. Electric field and surface charge
distribution.

KJl (fcp)coso
+

24-3 \

. [Cos(nr+ 1)+-cos(ln- l)+]ei”’

[

KJ~(Kp)cose 3JO(Kp)
+m .

2~m3 4-/m5 I

. [cos(m+ l)~+cos(m- l)o]e’@’. (68)

Jo(Kp)sin f?
BP= –iaep

[
nz(cos(m+ 1)++ cos(rn– 1)+)

2jm 3

+ + (cos(m + l)rj – cos(rn – 1)+) ]ei”’. (69)

485

+++ ---

A
-,

++ +---

Fig. 12. Toroidal mode of third type. Electric field andsurfacechmge
distribution.

[cos(rn+l)+-cos(m-l)+]eio’i- ‘Jo(’!.k!!!!
2&pcoso) 3

. [cos(mz+ I)f$+cos(m- l)+jei’”
1

(70)

B@=–i
OqMJ1 (Kp)sintl

[sin(m+ l)rj+ sin(m - l)@]ei@’.
2~

(71)

For the surface charge density we get

(1+3 COS20)P0–2COS13
o- [sin(m+ l)++ sin(m- l)+]e’””

2po~l” 3

+ {&’ [sin(m+ l)o-sin(m - l)+]ei’” (72)

The charge densities and the electric field lines are repre-

sented in Figs. 10– 12. The equations for the magnetic

field lines are

X=(l-pcoso )cosr)=kl (73)

and

JO(Kp)SIIIm@@ = k,. (74)

The magnetic field lines form again vortices in parallel

planes which are situated perpendicular to the plane of

the torus. The change of the structure of the field vortices

is due to the phase difference A@= 7r/2rn between (61)

and (74). There is no longer a m= O mode. As we see from

Figs. 6–12, essential differences appear between the struc-

ture of the fields of the second and third type, The m= 1

mode has a simple quadrtqmle structure. There are also

differences in the structure of the magnetic field vortices.

Remark: If we choose instead of PX # O, Py = Pz = 0, the

components of the Hertz vector in the form PX = PZ = 0,
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Py# O we get the same type of waves. They will only be

rotated by 90° around the z axis.

VI. CONCLUSIONS

We succeeded to obtain the explicit form of the compo-

nents of the electromagnetic field for the lowest 6 modes

if condition (15) is satisfied. For each eigenfrequency we

obtained three types of eigenfunctions with different sym-

metries. The symmetry properties of the eigenwaves are

related with the way to >olve our problem. We used

Cartesian components of P to obtain the possibility to

scalarize the vector wave equations. This leads to eigen-

modes with the corresponding symmetry (e.g., the mag-

netic field lines are situated in planes z = const or x =

const). Another method would lead to eigenmodes of

another symmetry, but the number of the eigenmodes

must be again three for each frequency, the eigenfrequen-

cies must be also described by (32), and the new eigen-

modes must be a superposition of the eigenmodes de-

scribed by us. It is expected that the experimentally re-

alized eigenmodes consist of a superposition of the eigen-

modes described here.

The method used in this paper is valid for the lowest m

modes satisfying condition (15). There is a formal similar-

ity between the expression of the eigenfunctions (21) and

the corresponding solutions for cylindrical resonators, but

in the structure of the electromagnetic field, and in the

value of the eigenfrequencies some essential differences

appear as a consequence of the toroidal geometry,

The toroidality of the system manifests itself in the

appearance of the factor (1 – p cos 0 ) – ’12 in the expression

for the components of the Hertz vector (9), which has an

influence on the structure of the electromagnetic field and

on the value of the eigenfrequencies. As a consequence

the expression for the Cartesian components of the Hertz

vector cannot be separated with respect of p and 0, and a

further coupling between p, 0, and + appears at the

construction of the toroidal components (8) of ~. There-

fore, the electromagnetic field has a pronounced three-di-

mensional character. We simplified this character a little

by retaining only the first term of the series (16) in the

detailed calculations of the field. In this case the more

important symmetry characteristics of the toroidal modes

became relevant (see Figs. 4–12) but the modes received

are essentially different from the well known TE and TM

modes of the straight circular waveguides. This is, e.g.,

evident from the plane structure of the magnetic field and

from the @ dependence of the field components (see, e.g.,

(60), (61), (73), and (74)). A superposition of the eigen-

modes described by us leads to TE and TM configuration

only in very particular cases [9].

A direct consequence of the toroidality is also that in

the expression of the eigenfrequency m2 – 1/4 appears

instead of m2.

The limit peO, m+ m coincides with the corresponding

limit for the thin straight cylindrical resonators.

The method described can be generalized to other sys-

tems with complicated geometries. It was used to describe

also the eigenmodes in toroidal systems containing plasma

and in coaxial toroidal systems [9] or to solve force-free

three-dimensional toroidal MHD equilibria [10].
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