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Toroidal Resonators for Electromagnetic Waves

FERDINAND CAP anp RUDOLF DEUTSCH

Abstract—The solution of Maxwell’s equations for toroidal systems has
been reduced to the solution of the scalar Helmholtz equation. The
eigenfunctions and the corresponding electromagnetic fields have been
calculated analytically. The dispersion relation was formulated. Three
different types of eigenmodes were obtained for each frequency. The
structure of the electromagnetic field of the m=0,1,2, and 3 modes is
analyzed.

I. INTRODUCTION

O OUR KNOWLEDGE no exact solution of the

Helmholtz equation is known for toroidal coordinates
[1]. On the other hand, such a solution is of interest not
only for microwave engineering, but also for the heating
of toroidal plasmas by electromagnetic waves. Using a
special trick, we have been able to find a solution of the
system of Maxwell equations not only for empty wave
guides but also for resonators filled with an isotropic
homogeneous plasma [2]. In the present paper we report
on the vacuum solution, which resembles a little the
solution by Brambilla and Finzi [3] but our solution is
based on a different method and yields more eigenfunc-
tions. Our solution admits an easy construction of the
field for different modes and gives an interpretation of the
dispersion relation.

During the elaboration of this paper, it was found that
an exact unseparated solution of the same problem [4].
The solution presented here is of the separated form
f(p)-g(8), whereas the exact solution is of the form h(p, ).
Using series expansions a comparison of the two solutions
seems to be possible.

II. THE REDUCTION OF THE VECTOR HEILMHOLTZ
EQUATION TO THE SCALAR HELMHOLTZ EQUATION IN
ToroipAL COORDINATES

The coordinate system which we use is the usual p,8,¢
system [5] (see Fig. 1). We study the propagation of the
electromagnetic waves on the basis of the vector Helm-
holtz equation

curl curl E — €, pgw’E =0. (1)

In order to find solutions of (1) which satisfy also
Maxwell’s set of equations we introduce the Hertz vector
P in the usual form

E=c, jijw*P+graddiv P 2)
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Fig. 1.

The system of toroidal coordinates.

and
E = iwfo 'LLO Curlﬁ. (3)

Exchanging F and Bin (2) and (3), the Fitzgerald F vector
could be used too. When P and F are known a general
solution of Maxwell’s equations can be written down. It is
easy to show that (2) and (3) satisfy Maxwell’s equations
and also (1) if P satisfies

curl curl P— grad div P= g pigws*P. 4)

If we write (4) in toroidal coordinates a coupled system of
three equations for the three components P,, P,, and P,
will be obtained. There is no possibility to obtain indepen-
dent equations for each of these components as may be
done in the case of Cartesian coordinates. But there is a
way to construct the solution of equation (4) for the
components P, Py, and P, using an idea, which some-
what resembles that used in [6] and {7]. In Cartesian
coordinates (4) splits into the system of three equations:

AP+ o1y 0B =0 5)

for j=x, y, and z.

Equation (5) can be transformed to toroidal coordinates
and the components P; can be regarded as functions of p,
8, and ¢. We then have to solve the scalar Helmholtz
equation

2 9P, 5 (1—pcosh) P,
8pp(1 pcosf) % +@”———p -0

2

P,
Tqbz +Kp(1—pcosd)P,=0 (6)

o
+_.—
1—pcosé
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where

wR )2‘ )

k2=eouow2R2=(T

Here R is the major torus radius (Fig. 1).

Now using the coordinate transformation for the co-
variant components of a vector we can express P, Py, and
P, through P,, P, and P, in the following form:

P,(p,60,6)= —P,(p.6,$)cosBcos

—P(p,0,$)cosfsing+P,(p,0,$)sinf
Py(p,0,6)=P,(p.0,¢)sinf cos¢
+P,(p,0,$)sinfsinp+ P(p, 0, p)cosd
P,(p,0,6)=—Pp,0,9)sin¢+ P,(p,0,4)cos . ®)
So we were able to “scalarize” the vector (1), ie., to
reduce it to a single scalar (6).
III. THE SOLUTION OF THE SCALAR HELMHOLTZ
EQUATION IN TOROIDAL COORDINATES

The scalar Helmholtz (6) is however also not separable
in toroidal coordinates [8], but it can be solved. In order
to do this we make the substitution

V(P 0™
P(p,0,¢)= ———. )
V1-pcosf
Inserting into (6) we obtain
Y R Ly
aP p op p° 06 (1—pcosh)?
(10)

The expression from the right-hand side vanishes if
m=1/2. We gave this exact solution in [5] and [11]. It has,
however, a period of 47 and therefore it does not corre-
spond to an empty torus. We will analyze the physical
consequences of this solution in another paper[11].

If m+1/2 the right-hand side of (10) does not vanish.
Since separation between p and 6 is impossible we expand
the right-hand side term

> (n+1)p™cos"d.
n=0

(1-pcosf )= (11)
This series converges for p <1. For experimental toroidal
systems the maximal value of the inverse aspect ratio p is
about 0.3. In this case the error is about 107 if we take

into account all terms including the term ~p ~*. Inserting
(11) into (10) we obtain

10 ¥m), 1 3%%m .
=—lp—==+— +
p 9 (p 8p) p? 039> K Ym

= U, i (n+1)p"cos™d (12)

n=1

where
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K=K+ (13)
and
pr=mi— L. (14)

If we limit our calculations to the waves, whose longitudi-
nal wavelength (27R/m) in the torus exceeds the dimen-
sion of the transversal circular sections of one branch of
the torus (2Rp,), or if condition

(15)
(po 1s the inverse aspect ratio of the torus) is satisfied, the
solution of (12) can be written in the form

4’m=\bm,0+¢m,l+¢m,2+\bm,3+'“ +¢m,n+ (16)
where the functions v, , are solutions of the equations

alPm,() 1 82¢m,0
p )+_2 892

mp, <7

+ 63, 0=0 (17)

‘Pm 1
06

+K21Pm1

=2ppcost,, (18)

2¢m, 2
062

3, 9
4/ ’2)+—13 +K2‘1{/m.2

=2ppcosby,, ; +3p’p’cos’ By, , (19)

a’ibm,3 1 9 2¢m,3
) + —2— + K2\[/m’3

13 (p
p op\" 9p 362
=2p*pcosty,, ,+3pp*cos? By, |

+4p%p’ cos’ 0y, , (20)
The solution of (17) which is everywhere finite is given by
the Bessel functions

Ym.0=AJ, (kp)cosrh. (21

If we insert this expression in the right-hand side of (18)
and solve the equation we get for the first correction to

Q1)

Ap
ll/m,l—TK—

[y (s9)cos(— 1)0

—J,_(xkp)cos(v+1)8]0%.  (22)
Inserting (21) and (22) in (19) and solving the equation we
get the second approximation. Continuing this method we
can calculate the corrections to an arbitrary order of
accuracy. Our calculations will be restricted to the lowest
» modes. In this case we get for the sum (16), for various
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values of » in the approximation up to the terms with
cos46, the following functions (kp=z). For »=0, 1, 2, 3,

+ ﬁzle(z)}z%osw
and 4 we get

3
2 2 2
Ymsm0= [Jo(z)+ D@ = 5 T2 (@) +{1536 2ha() + g wh()+ Jl(z)]z cos 36
4 74 2
_}’_2. - 2 zJ4(Z)+ z-]:;(Z)
+ 35 [N1@z=1(2) |9+ 7225344J8(z)z 9152 1536

74 4 (Yﬂ's

2
" 84
150528 /s(9)2 + 1843214(“)"' 256 ' 576 )sz(Z)+ 501 @7 COS40} (23)

Yiv2 and omitting the argument z of the Bessel functions
+ J(2)7’
387072 115200 /7 .
_pl T2 6 71
S, Trin T+ Ylej()7 ‘P"""=1'B( g il 30720 26t 20 % s
55296 1 23040 |5 12800 73\¥/%
3
_ Y] 6 7172 5 57172 5
N 11> L v I §1aa 2" 15z ¢ 05t 382 s
11520 * 25600 * 19200 /(%)%
YI‘Y2 5 4 4
sz Yﬂ’z 'Yz 7.(2)78 576 ¢ e 192 eat 24 &
280 T 3200 300 |4(%)
2
¥
+| I+ 5o 2 (71,27 )+——z3J2 cosf
+ 7173 Jz(z)z 384
1024 256
_ 11 Yl 6 Yl 6
RO I ()3 +[ g 2ot Tisp tVat 30522
2560 * 3840 960 5
Y1Y2 5, VY2 o Bvivs
3 N L ) R NRLLLPS ] SRR ALEYE) &
W3 __+_ L(@)7+ 5 Y4 ) 3840 °777 768 ¢ 75t 280
256
Y172
Y1 _ A s
+| 7 (@) - 1536(4J4(z) 32J5(2))7° 256 <1 * 16”2}"0520
m2 <5g_ (4/3(2) = 32/,(x))z? + 2+ 5 23 (T g+ 6, + 15J,) |cos 38
128 i+ 240 s P4 2
3
_§(4J2(Z)—3zJ1(z))z}z20050 ol Y T Y172 T Y1Y2 57
, ) 3072 ¢ 72 17920 %7t 1536 27
1 REN N S
64 22D+ 151(2) ~ 1533602 76(2) By o W
5376 © 5T 256 ¢
4
Y1 71 Y172
+ o 2 (Z)—(-——+ ) s(2) 1Y Y
13440 © 74 10752 © 3072 J* s Y2 s 3 .4
+ 320le “@ J}cos40 24
7712Y2 57%7’2 Y173 72

+
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Y173 3
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2
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Fig. 2. The maximum error in determining A for different x and m.

71

128

- —g—z2J100530+{

1
24, — 34 3J1}cos40] (25)

Vi, = 3"0{ A 74,0828 + J,cos 30

- % 7%/, 0846 } (26)

27)

Here we used the notations z=«p and v,=(+ 1) p*/¥/*2.
All Bessel functions J; are functions of kp. The solution
¥,, of (10) is a superposition of the functions (23)-(27).
The constants B, C, D, and E are determined by the
boundary conditions. For conducting torus walls B,=0
must be satisfied at the boundary p=p, This can be
realized in agreement with (3), (8), and (9) if y,, itself
vanishes at the boundary. Condition

Y= Vmy=0T Ymp=1t ¥my=2
FYmym3F ¥y =a=0 (28)
leads to five conditions which determine B, C, D, E, and
the product kp,. A very good convergence of the series
Vi = Vmp=0F Ymy=1F ¥mp=2

+\bm,t/=3+¢m,v=4+ e (29)

was found. In Fig. 2 we have plotted the deviation of the
product kp, from the value 2.4048255577 (corresponding
to the first root of the Bessel function J,) for different m if
we use the method described above. The relative deviation

—2.4048255577
KPg

is expressed as a function of « in the interval of practical
interest. It can be seen that it is generally less than 1073
This means that the approximation

Y =AJo(kp) (30)
leads to a good description of the structure of the electro-
magnetic field and that

Kpo=2.4048 (31)

can be used to determine the dependence of the parameter
k from the inverse aspect ratio p,.

U p=4= EJ c0s48.
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Fig. 3. The dependence of the eigenfrequency on the inverse aspect
ratio of the torus.

1V. THE DISPERSION RELATION

Now using (7), (13), and (31) the dispersion relation
results

=32 1) E @
05 R
If we now take into account that
po<1 (33)
then the eigenfrequencies are always greater than
wim= 4 Vi +55332 . (34)

The dependence of the eigenfrequencies on the inverse
aspect ratio p, for different mode numbers m is given in
Fig. 3. The distance between two different eigenfrequen-
cies is of the same order as the minimum frequency.

In the whole domain of applicability of our method the
dispersion relation (32) can be approximated by the series

wR _ 24048 + Po (mz—l)
c Po 4.8096 4

1116("’2—_)

V. THE STRUCTURE OF THE FLECTROMAGNETIC
FieLp 1IN THE TORUS

(35)

Now we shall use the approximation (30) to construct
the field components of the stationary electromagnetic
wave in the torus. These fields all correspond to the lowest
# mode.

Inserting (30) into (9) we get two possibilities to choose
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the Cartesian components of the Hertz vector

Jo(rp)cosme .
—e

! V1—pcosé
and/or
Jo(kp)sinme .
B(p.f,4)= " g, (37

V1—-pcosf

We shall use these functions to construct the toroidal
components of the Hertz vector using formulas (8).

It is possible to define some normal modes and to get
all stationary waves with the same value of m as a
superposition of these modes.

A. Toroidal Modes of the First Type

If
Jo(kp)cosme
e —

V' 1—pcosf

the toroidal components of the Hertz vector are

P,=P,=0 and P,= (38)

_ Jo(xp)sinfcosme .

T Viceest

_ Jo(rp)cosfcosme
9= m €
P,=0.

Using (2) we obtain for the components of the electric
field

(39)

1 Jo(xp) k 2—3pcosé
’ 4/ V1= pcoss  2° V(I—pcosh) *
-sinfcosmpe™  (40)
1

2 21

K m i/ (xp)
Ey=| ——Jo(kp) ——F————

V1—pcosé pV1—pcosh

xJ;(xp)sin’ @ cos me

- cos f cos mpe™* + e (41)
2y(1—pcosh) *
£ - mxJ (kp)sinf sinme ot 42)

’ V(1—pcosh) 3

For the components of the magnetic field results from (3)
and (39)

mJy(kp)cosfsinmo
e

B =iwep (43)
! V(1 —pcosh) *
mJy(kp)sinfsinme
B,= —iwen olxp) ¢ d (44)

V(1 —pcosf) *
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Fig. 4. Toroidal modes of first type. Electric field and surface charge
distribution.

Jo(kp)—2k(1—pcosf )J (kp)cosf
cos

NIk
(45)

For the charge surface density the following relation re-
sults:

e it
B, =iwep maoe™”.

2—3pycosf

V(1 —pycosh)

The distribution of the surface charge and the electric
field lines in the interior of the torus are represented for
m=0, m=1, and m=2 in Fig. 4. As can be seen there
appear dipolar, quadrupolar, octupolar, etc. oscillations of
the electric charges in the inner side of the toroidal
surface. The changes of the electric field and the surface
currents create a magnetic field with oscillations shifted
by 90° in phase and described by (43)-(45). The equa-
tions of the magnetic field lines can be integrated analyti-
cally. We obtain

o~ sin # cos mgpe™. (46)

z=psind=k, 47)

and
Jo(kp)
V1—pcosf

They are represented in Fig. 5 for m=0, m=1, and m=2.

(48)

cosmo=k,.



CAP AND DEUTSCH: RESONATORS FOR ELECTROMAGNETIC WAVES 483
3mJy(kp)sinf

+—__._
4\/(1—pcos) °

J,
E¢={—O('—Cﬂ)—[l+2m2—2(l—pcosﬂ)2

4/(1—pcosh) °

‘[ cos(m+1)¢ —cos(m—1)$ [e**  (54)

Fig. 5. Toroidal modes of first type. Magnetic field lines.

( - 1)] &J(kp)cosd

. K — — Rl ———

Remark: If we use for P, in (38) the component (37) 4 2V(1~pcosh) 3

instead of (36) we get similar fields, which are, however, ] ) it

rotated by 77 /2m around the z axis. - [ sin(m+1)¢ —sin(m —1)¢ Je

B. Toroidal Modes of the Second Type +m 3Jo(xp) — /1 (kp)cost
For 4/(1—pcosB) >  2y(1—pcosh) *

P = Jo(kp)cosme oot P,=P,=0 (49) . [sin(m + 1)+ sin(m— 1)¢]eiwt (55)
V1-pcosf B = Wto(kp)sing (sin(m+ 1)+ sin(m—1)3)
=fj———————— | m(sin(m sin(m—
another type of toroidal modes results. These modes are  * 2‘/(1 —pcosa) 3 [ ¢

described by

Jo(kp)cos 8 . + L (sin(m+ 1)¢ — sin(m — l)qb)Jei‘“’ (56)
P =———""——7Tcos(m+1)p+cos(m—1)¢ |e™* 2
! 2V 1—pcosb [ ]
(50) p ;o1 Jo(kp)cos® — wJ,(xp)
: 2
J 7 . 2y(1— g)3 V1i—- )
py= LUt 1) costm—pg]e (51) V(I —peos STpees
2V 1—-pcosf [ sin(m+ 1)¢ ~sin(m — 1)¢ |
J . J, 0
P,=— -——& [ sin(m+ 1) —sin(m— 1) ] e®*. P bt okp)cos [sin(m + 1) +sin(m— 1) Je™*

2V 1-pcosd 2\/(1—pcosf) 3

(52) (57)

The components of the electric and magnetic fields are B = _iweumll(lcp)sinﬂ [cos(m +1)¢+cos(m— 1) ] et
2V 1—pcosb
E ={_ Jo(xp) cosf [ 3 +m2—l} (58)
P v/ - 2 4 . .
2V 1-pcosf | 4(1—pcosd) The charge density on the surface of the torus is propor-
tional to

J(kp)cos@
x_Dilxe) (1+3cos?8 )p,—2cosf

2p 3
V(- 0
1= pcosf) 2p6Y/(1—pocosh) *

[ cos(m+ 1)+ cos(m— 1) |
m [ cos(m+1)¢p—cos(m— 1) Je™. (59)

+ ——
K J(xp) 3Jo(kp)cosf } '\/(1—p00080)3

[+

-[a +3°°S20)p_2c°30]} [ cos(m + 1) — cos(m — 1) e

+m| = -
2 T Ay
(1-pcosf) > 4y(1—pcosh) * The electric field and the surface charge distribution are
+ [cos(m+1)¢— cos(m— 1) 4):, e (53) represented in Figs. 6-9. The magnetic field lines are
given by
Jo(kp)sing =(1— =
E,= o(p) {n2+m2—%+ 3 2} x=(1—pcosfh)cosp=k, (60)
2V 1—pcosh 4(1—pcosd) and
- Jo(kp)cosmpV cosdp =k,. (61)
__*h (xp)sin - (2—pcosh) They form vortices in parallel planes which are situated
4p\(1-pcosh) 3 perpendicular to the plane of the torus. The electric field

has a three-dimensional structure. We tried to show this
representing the field lines for different sections of the
torus. For m=0 a simple dipolar polarization appears. For
high m values the field structure will be more complicated.

- [ cos(m+1)p+cos(m—1)¢ [e™*
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Fig. 8. Toroidal mode of second type. Electric field and surface charge
distribution.

Fig. 6. Toroidal mode of second type. Electric field and surface charge
distribution.

‘ _—— Fig. 9. Toroidal mode of second type. Electric field and surface charge
distribution.
Fig. 7. Toroidal mode of second type. Electric field and surface charge
distribution.
. . Jo(kp)cos 3 1 2
There appear some regions with greater charge concentra- i —— [ 2 + (mz_ Z)(l —pcosd) ]
tions which are shown in the figures. 2/(1-pcosh) °
C. Toroidal Modes of the Third Type [ sin(m+ 1)+ sin(m —1)¢ |e™*
If N &J,(kp) 3Jo(kp)cosd
Jo(kp)sinmo m -
Px=Me’“‘, P,=P,=0 (62) 2\/(1—pcos€) 3 4\/(1—pcosl9) 5
V1-pcosh - [sin(m+ 1)¢ —sin(m—1)¢ | (66)
the toroidal components of the Hertz vector will be
p Jo(kp)cosd [ in(m+1) in(m—1) ] ot Eo={__Mn_0__
=~ —————\|sin(m+1)p+sin(m—1)¢ |
P 2V 1= pcosh 2\(1—pcosf) °
(63) 1
Ae2+m— L)1 - 2,3
p,= Jolceking [sin(m+1)¢+sin(m— 1) | (64) [(K o 4)(1 e 4]
g = ————— | sin(m +sin(m—1)¢ e
2V 1-pcosh .
Jo(kp) kJ (kp)sind @ 0)
Kp ) - —pcos
pP=—"2"" cos(m+ 1)¢ —cos(m—1)¢p |,  (65) 40(1— 3
® cosf
VI peost [ ] py(1—pcosf)

<[ sin(m+ 1)¢ +sin(m— 1) | ™"
3mJy(kp)siné

wJ 1 (kp) * 5
E,= (1+3cos’8)p—2cosd 4y(1—pcosd)
{4;)\/(1 —pcosf) 3 [ ) (67)

The components of the electric and magnetic fields are
[ sin(m + 1) —sin(m— 1)¢ |™".
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Fig. 10. Toroidal mode of third type. Electric field and surface charge
distribution.

+
Iy B
++ +\ ‘,{4‘;
Y
Fig. 11. Toroidal mode of third type. Electric field and surface charge
distribution.
Jolk 2
%=__JLQ__g+#_%__JiQL7
2V 1-pcosh 2(1—pcost)
kJ,(kp)cosf .
+ ————— [ cos(m+1)p— cos(m— 1)¢ [¢*
2y(1—pcosh) *
KJ cosf
m 1(kp)

3Jo(xp)
2y(1—pcosf) >  4)(1~pcosh) 5J

+[cos(m+ 1)¢ + cos(m— 1)¢ | .

(68)

Jo(xkp)sind

2y(1—pcosh) *

B, = —iwep. [m(cos(m +1)¢ +cos(m—1)¢)

+ % (cos(m+1)¢p —cos(m—1)¢) ]eiw‘. (69)
B, = — v Jo(Kkp)cosh N kJ,(kp)
’ 4y(1—pcosf) * 2V 1—pcosh
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p-]
+oompt

Fig. 12. Toroidal mode of third type. Electric field and surface charge
distribution.

) mJy(kp)cosé
M + 1 - - 1 e'wt+ — T
[eosm+ g —eos(m—1)e ] 2\/(1—— pcosh) 3
+ [cos(m+ 1)+ cos(m—1)¢ | e"“”} (70)

.wewc.ll(lcp)sinb?[ in(m-+ 1)+ sin l)ﬂ ot
= — | —————— | sin(m sinfm — e,
¢ 2V 1-—pcosd

(71)

For the surface charge density we get
(1+3cos?8)p,—2cosf

2p0\/(1—pycost)

m [sin(m+1)¢ —sin(m—1)¢ ] (72)

V(1—pycosh)

The charge densities and the electric field lines are repre-
sented in Figs. 10-12. The equations for the magnetic
field lines are

O~

[sin(m+ 1)¢+sin(m— 1)¢ | '

-+

x=(1—pcosd)cosp=k, (73)
and
Jo(kp)sinmepVecosd =k,. (74)

The magnetic field lines form again vortices in parallel
planes which are situated perpendicular to the plane of
the torus. The change of the structure of the field vortices
is due to the phase difference A¢p=7/2m between (61)
and (74). There is no longer a m=0 mode. As we sec from
Figs. 6-12, essential differences appear between the struc-
ture of the fields of the second and third type. The m=1
mode has a simple quadrupole structure. There are also
differences in the structure of the magnetic field vortices.

Remark: 1f we choose instead of P,#0, P,=P,=0, the
components of the Hertz vector in the form P,=P,=0,
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P,#0 we get the same type of waves. They will only be
rotated by 90° around the z axis.

VI. CONCLUSIONS

We succeeded to obtain the explicit form of the compo-
nents of the electromagnetic field for the lowest § modes
if condition (15) is satisfied. For each eigenfrequency we
obtained three types of eigenfunctions with different sym-
metries. The symmetry properties of the eigenwaves are
related with the way to solve our problem. We used
Cartesian components of P to obtain the possibility to
scalarize the vector wave equations. This leads to eigen-
modes with the corresponding symmetry (e.g., the mag-
netic field lines are situated in planes z=const or x=
const). Another method would lead to eigenmodes of
another symmetry, but the number of the eigenmodes
must be again three for each frequency, the eigenfrequen-
cies must be also described by (32), and the new eigen-
modes must be a superposition of the eigenmodes de-
scribed by us. It is expected that the experimentally re-
alized eigenmodes consist of a superposition of the eigen-
modes described here.

The method used in this paper is valid for the lowest m
modes satisfying condition (15). There is a formal similar-
ity between the expression of the eigenfunctions (21) and
the corresponding solutions for cylindrical resonators, but
in the structure of the electromagnetic field, and in the
value of the eigenfrequencies some essential differences
appear as a consequence of the toroidal geometry.

The toroidality of the system manifests itself in the
appearance of the factor (1 —pcos#)~'/? in the expression
for the components of the Hertz vector (9), which has an
influence on the structure of the electromagnetic field and
on the value of the eigenfrequencies. As a consequence
the expression for the Cartesian components of the Hertz
vector cannot be separated with respect of p and 4, and a
further coupling between p, 8, and ¢ appears at the
construction of the toroidal components (8) of P. There-
fore, the electromagnetic field has a pronounced three-di-
mensional character. We simplified this character a little
by retaining only the first term of the series (16) in the
detailed calculations of the field. In this case the more
important symmetry characteristics of the toroidal modes
became relevant (see Figs. 4-12) but the modes received
are essentially different from the well known TE and TM
modes of the straight circular waveguides. This is, e.g.,
evident from the plane structure of the magnetic field and
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from the ¢ dependence of the field components (see, e.g.,
(60), (61), (73), and (74)). A superposition of the eigen-
modes described by us leads to TE and TM configuration
only in very particular cases [9].

A direct consequence of the toroidality is also that in
the expression of the eigenfrequency m?—1/4 appears
instead of m>.

The limit p—0, m— o0 coincides with the corresponding
limit for the thin straight cylindrical resonators.

The method described can be generalized to other sys-
tems with complicated geometries. It was used to describe
also the eigenmodes in toroidal systems containing plasma
and in coaxial toroidal systems [9] or to solve force-free
three-dimensional toroidal MHD equilibria [10].
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